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Comparison of rigidity and connectivity percolation in two dimensions
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Using a recently developed algorithm for generic rigidity of two-dimensional graphs, we analyze rigidity and
connectivity percolation transitions in two dimensions on lattices of linear size up toL54096. We compare
three different universality classes: the generic rigidity class, the connectivity class, and the generic ‘‘braced
square net’’~GBSN!. We analyze the spanning cluster densityP` , the backbone densityPB, and the density of
dangling endsPD . In the generic rigidity~GR! and connectivity cases, the load-carrying component of the

spanning cluster, the backbone, isfractal at pc , so that the backbone density behaves asB;(p2pc)
b8 for

p.pc . We estimatebgr8 50.2560.02 for generic rigidity andbc850.46760.007 for the connectivity case. We
find the correlation length exponentsngr51.1660.03 for generic rigidity compared to the exact value for
connectivity,nc5

4
3 . In contrast the GBSN undergoes a first-order rigidity transition, with the backbone density

being extensive atpc , and undergoing a jump discontinuity on reducingp across the transition. We define a
model which tunes continuously between the GBSN and GR classes, and show that the GR class is typical.
@S1063-651X~99!12102-0#

PACS number~s!: 64.60.Ak, 05.70.Jk, 61.43.Bn, 46.25.2y
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I. INTRODUCTION

Scalar percolation is a simple model for disordered s
tems, and has received much attention in the last two dec
@1–3#. This model describes the transmission of a scalar c
served quantity~for example, electric charge or fluid mas!
across a randomly diluted system. However in the calcu
tion of mechanical properties force~i.e., a vector! must be
transmitted across the system@4#. It was originally suggested
@5# that the critical behavior of the elastic moduli of a pe
colating system should be equivalent to that of its conduc
ity, but this is only valid for the scalar limit of the Born
model of elasticity@6#, a model which is not rotationally
invariant and in many cases inappropriate. Elastic perc
tion is not in general equivalent to scalar percolation. T
was first made clear by the work of Feng and Sen@7#, which
showed thatcentral-force elasticitypercolation was in a dif-
ferent universality class than scalar percolation, and provi
the starting point for a renewed interest in this problem.

It soon became clear that the elasticity problem can
divided into two categories@8#, according to the kind of
forces which hold the lattice together. If angular forces
important@9–14#, a singly connected path across the latt
is enough to ensure rigidity, so any configuration of bon
which is connected is also rigid. In this case, the geometr
the elastic backbone is exactly the same as that of the s
percolation problem@10,12–14#. This is the case for bond
bending@9,10# and beam@11,14# models. Thus the elasticity
percolation problem with angular forces is now well und
stood, and that understanding has borrowed much from
geometrically equivalentscalar percolation problem. It is th
purpose of this paper to analyze the more challeng
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central-force rigidity percolation transition, stressing t
similarities and differences between this problem and sc
percolation.

If rigidity @7,15–24# is provided by central forces alon
~e.g., rotatable springs!, single connectedness is not enou
to ensure rigidity. In this case a lattice that is conducti
usually would not support an applied stress~i.e., it would not
be rigid!. This was first shown by Feng and Sen@7# who,
found that the rigidity threshold is significantly larger tha
the conductivity threshold. An exception worth mentionin
is the case of elastic lattices under tension, or, equivalen
systems in which all springs have zero repose length@25#.
For such systems, the conductivity and Young modulus
equivalent, i.e., rigidity appears at the scalar percolati
point. It has been recently emphasized@26# that entropic ef-
fects can give rise to similar effects in central-force syste
with nonzero repose length and finite temperature, altho
the connection with Ref.@25# was not established.

The main difficulties associated with central-force elast
ity are as follows: Whereas in the scalar connectivity cas
is a trivial problem to determine when two sites belong to
same connected cluster, in the case of central-force rigidi
is not in general easy to decide whether two objects are
idly connected. For example, it takes some thinking to
that the six bodies in Fig. 1 form a rigid unit. Thus it is n
easy to see how a computer algorithm can be devised
identify rigid clusters.

In the scalar connectivity problem, the removal of a sing
connected bond leads to the separation of a connected cl
into two clusters. In the rigidity case, the removal of
analogous ‘‘cutting bond’’ may produce the collapse of
rigid cluster to a collection of an arbitrarily large number
smaller ones~we call this thehouse-of-cardsmechanism!.
Figure 1 shows a simple example of this situation. Due
2614 ©1999 The American Physical Society
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PRE 59 2615COMPARISON OF RIGIDITY AND CONNECTIVITY . . .
this fact, the transmission of rigidity can be ‘‘nonlocal
@15,23#, since a bond added between two clusters on one
of the sample may induce rigidity between two clusters
the other side of a sample.

A second source of difficulties in the problem of centr
force rigidity is the existence of particular geometrical a
rangements for which a system may fail to be rigid@27# even
if it is rigid for most other cases@28–30,23#. Take, for ex-
ample, two rigid bodies connected by three bars in two
mensions, as shown in Fig. 2. This structure is in gene
rigid, but if the three bars happen to have a common po
then the structure is not rigid, since this common point is
center of relative rotations@23# between the two bodies.

Particular geometrical arrangements@such as Fig. 2~b!#,
which are nonrigid even when the structure is rigid for m
other configurations, are calleddegenerate configurations.

FIG. 1. The six bodies shown in this figure are rigidly co
nected, i.e., they belong to the same rigid cluster. But the rem
of any bond~thin black lines! leads to the collapse of the structur
which is then reduced to a collection of sixindependentrigid clus-
ters~no two are rigidly connected!. This means that the existence
a rigid connection between, for example, clusterse and f cannot be
decided on local information only, since it depends on the prese
of ‘‘far away’’ bonds, i.e., bonds not connected to clusterse or f.

FIG. 2. Three bars are in general enough to form a rigid c
nection between two rigid bodies@case~a!#, but for particular,de-
generatecases@case~b!#, rigidity fails even when the system ha
the right number of bars. Case~b! fails to be rigid because the thre
bars happen to have a common point. A structure formed by
bodies connected by three bars isgenerically rigid in two dimen-
sions if it is rigid ‘‘for most geometrical arrangements,’’ i.e., lea
ing aside degenerate configurations such as~b!, which occur with
probability zero in the configuration space.
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Degenerate configurations appear with probability zero if
lattice locations are ‘‘randomly chosen.’’ A lattice is thu
said to begenerically rigid, if it is rigid for most geometrical
arrangements of its sites. Generic rigidity only depends
the topology of the underlying graph, i.e., ignores the pos
bility of degeneracies. Since degenerate configurations
always possible on perfectly regular lattices, we will assu
our lattice sites to have small random displacements,
which case generic rigidity applies.

Up until recently, no simple algorithms existed for th
determination of the rigid-cluster structure of arbitrary la
tices. Due to this, direct solving of the elastic equations w
one of the few methods@4# available to obtain information
on the structure of rigidly connected clusters. But this is ve
time consuming, and did not allow the study of large lattic
Previous simulations were, for example, not sufficiently p
cise to confirm or reject the proposal@16,31,17# that bond-
bending and central-force elastic percolation might after
still be in the same universality class. This suggestion w
not inconsistent with some numerical results obtained
small-sized systems@16,31,17–19#.

Recently there has been a breakthrough in the sys
sizes accessible to numerical analysis@20,22,21#, following
the development of efficient graph-theoretic methods for
problem or generic rigidity in two dimensions@29,30,32#.
Using such methods, we study the central-force rigidity p
colation problem on randomly diluted triangular lattices
linear size up toL53200, and connectivity percolation an
body-joint rigidity percolation on site-diluted square lattic
of size up to L54096. Our numerical algorithm@30# is
complementary to the ‘‘pebble game’’@22,32#, which is an
implementation of Hendrickson’s matching algorithm in t
original ‘‘joint-bar’’ representation of the network@29# ~see
below!. This paper is an elaboration and extension of our t
recent letters on this subject@20,21#. We extend and elabo
rate upon the numerical data presented there in several w
by comparing rigidity and connectivity percolation, b
studying significantly larger lattices for rigidity percolation
by giving data on site- and bond-diluted lattices with a va
ety of boundary conditions; by presenting results on a bo
joint model which is in the universality class of bar-and-joi
rigidity percolation, and, by presenting detailed results fo
model which continuously tunes between the braced squ
lattice ~which has a first-order rigidity transition! and the
isotropic triangular lattice~which has a second-order rigidit
transition!.

The numerical method is briefly described in Sec. II.
Sec. III, our results are presented and their implications
cussed. A comparison is made with other available numer
and analytical results for the central-force rigidity perco
tion problem. We also discuss the issue of first-order rigid
which has been the subject of a comment and reply in ph
cal review letters@33#. Section IV contains our conclusions

II. NUMERICAL METHOD

We take an initially depleted triangular lattice and a
bonds~in the bond-diluted case! or sites~in the site-diluted
case! to it one at a time, and use a graph-theoretic match
algorithm @30# in order to identify the rigid clusters that ar
formed in the system. For the case of bond dilution,p is the
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2616 PRE 59C. MOUKARZEL AND P. M. DUXBURY
density of present bonds, while in site dilution it indicates t
density of present sites. In the site-diluted problem, a bon
present if the two sites it connects are.

We use the body-bar version@30# of a recently proposed
rigidity algorithm @29#. This algorithm, being combinatoria
in nature, allows us to identify sets of sites which are rigid
connected, without providing any information on the actu
values of the stresses when an external load is applied.
body-bar algorithm sees the lattice as a collection of ri
clusters~or ‘‘bodies’’! connected by bars, instead of poin
connected by bars as proposed in the original algorithm@29#
and as implemented in the ‘‘pebble game’’@32#. The body-
bar representation allows a more efficient use of CPU
memory, as each rigid cluster is represented as one ob
The matching identifies rigid clusters andcondensesthem to
one node as new bonds are added to the network.

In two-dimensional rigidity, a rigid cluster has three d
grees of freedom, while a pointlike joint has two. Therefo
the minimumnumber of bonds needed to rigidizen joints in
two dimensions is 2n23. Matching algorithms@29,30,32#
are based on this sort of constraint counting.

The body-bar algorithm@30#, can be extended to hand
‘‘rigidity problems’’ with arbitrary values ofg ~number of
degrees of freedom of a joint! andG ~degrees of freedom o
a rigid cluster!. Connectivity, for example, is just a speci
~simple! case of rigidity withg51 andG51: the minimum
number of bonds needed to connectn points isn21 in any
dimension. Connectivity percolation can thus be studied
ing this algorithm. More details on the application of matc
ing algorithms for the specific case of connectivity perco
tion can be found in Ref.@34#.

There are several ways to define the onset of global rig
ity in a network @20#. We have used two distinct method
First we determine whether an externally applied stress
be supported by the network, which we call applied str
~AS! percolation. Second, we studied the percolation of
ternally stressed~IS! regions.

At the ASpercolation point, an applied stress is first abl
to be transmitted between the lower and upper sides of
sample. As we add bonds one at a time, we are able to d
this percolation point exactly by performing a simple te
@30# which consists of connecting an additional fictitio
spring between the upper and lower sides of the system.
auxiliary spring mimics the effect of an external load, an
therefore, the first time that a macroscopic rigid connect
exists, a globally stressed region~the backbone! appears.

The IS critical point is defined as the bond or site dens
at which internal stresses percolate through the system.
means that the upper and lower sides of the system belon
the same self-stressed cluster@20#, and this is trivially de-
tected within the matching algorithm@30#. The AS and IS
definitions of percolation are in principle different, but w
found @20# that the average percolation threshold and
critical indices coincide for large lattices. Similar definition
apply to the connectivity case, with the AS case being
usual definition, i.e., the onset of electric conductivity, a
IS being percolation of ‘‘eddy currents.’’

We define thespanning cluster~Fig. 3! as the set of bonds
that are rigidly connected to both sides of the sample. Ho
ever, only a subset of these bonds carries the applied l
This subset is called thebackbone. The backbone will in
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general include somecutting bonds, so named because th
removal of any one of them leads to the loss of global lo
carrying capability. Cutting bonds attain their maximu
number exactly atpc @35#. The backbone bonds which ar
not cutting bonds are parts of internally overconstrain
blobs. In the rigidity case, the smallest overconstrained cl
ter on a triangular lattice is the complete hexagonal wh
~12 bonds!, while in the connectivity case it is a triangle~i.e.,
the smallest possibleloop!. The spanning cluster also con
tains bonds which are rigidly connected to both ends of
sample but which do not carry any of the applied load. Th
are calleddangling ends. This classification is standard i
connectivity~scalar! percolation@36#.

In this work we analyze several other boundary con
tions, particularly in the generic rigidity case on triangul
lattice. In that case, for site dilution we analyze AS with rig
bus-bars at the ends of the sample, AS without bus b
~any-pair rigidity!, and IS with bus bars. For bond dilution
only the care of AS with bus bars was studied. We determ
the exact percolation point~AS or IS! for each sample, so we
can identify and measure the different components of
spanning clusterexactlyat pc for each sample. This shoul
be contrasted with usual numerical approaches, in which
erages are done at fixed values ofp, and ^pc& is obtained
from finite-size scaling~e.g., data collapse!. In that case, it is
known that slight differences in the estimation of,pc. can
lead to important deviations in critical indices@16#. This
source of error is absent in our measurements. Sample a
ages are done over approximately 108/L2 samples.

III. RESULTS

We first analyze the size dependence of the three
probabilities—PB the backbone densityPB , the dangling-
end densityPD , and the infinite cluster densityP`—exactly
at their percolation thresholdsas described in Sec. II. In
Figs. 4~a!–4~c!, these data are presented for the three diff
ent universality classes in Figs. 3~a!–3~c!.

Case ~c! corresponds to the generic braced square
~GBSN!, which is a square lattice to which diagonals a
added at random with probabilityp. The nongeneric version
of this problem has been studied by many authors@37,38,24#,
and it is well known that the number of diagonals needed
rigidize it is not extensive:pc;0 whenL→`. This is con-
firmed by our numerical simulations, which correspond
the bus-bar boundary condition.

In Fig. 4~d! we also present data for the rigidity caseg
53,G53 on a square lattice, to further test whether the
gidity class is universal in two dimensions. In this mod
each site of a square lattice is a body, and so hasg53
degrees of freedom. Each of these bodies is connecte
each adjacent body by two bonds or bars, i.e., two conti
ous bodies are pinned at a common point. Maxwell count
@39# then impliesf 5324p, so that the Maxwell estimate o
the bond percolation threshold is 3/4. Our numerical estim
is pc50.748 7760.000 05, thus confirming the accuracy
the Maxwell approximation.

One clear feature of Fig. 4 is that the BSN@Fig. 4~c!# has
a qualitatively different behavior than the other cases.
the BSN,PB ,P` , andPD all have a finite density at largeL,
indicating that the rigidity transition is first order in this cas
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FIG. 3. Infinite percolation clusters which lie in different universality classes:~a! Connectivity percolation (g5G51) on a triangular
lattice.~b! Rigidity percolation (g52,G53) on a triangular lattice.~c! Rigidity percolation (g52,G53) on a braced square lattice. For~a!
and~b!, boundary conditions are periodic in the horizontal direction, while for~c! they are free. The system sizeL564 and rigid bus bars
are set on the upper and lower ends of the sample. Thebackbone, is composed of ‘‘blobs’’ of internally stressed bonds~thick black lines!,
rigidly interconnected by cutting bonds~gray lines!. Cutting bonds are also calledred bonds. Removing one of them produces the collap
of the system.Dangling ends~thin lines! are rigidly connected to the backbone, but do not add to the ability of these networks to carr
external load~or current!.
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In contrast, in both the connectivity@Fig. 4~a!# and rigidity
cases@Figs. 4~b! and 4~d!#, PB and P` are decreasing in a
power law fashion over the available size ranges. Howe
the behavior ofPD is more complex. First we discuss th
behavior ofPB .

At a second-order phase transition, finite-size scal

theory predicts PB(pc);L2b8/n. Taking into account
r,

g

correction-to-scaling terms, which we assume to be po
law, we may generally write

PB5C1L2e~11C2L2v!. ~1!

This expression is fitted to our numerical data by cho
ing the set of parameters$C1 ,C2 ,e,v% that minimize the
error
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E5( S PB
measured2PB

f it

PB
measured D 2

. ~2!

A plot of 2 ln(PB)/ ln(L) vs. 1/ln(L) should then have an
asymptotic (L→`) intercept equal to the leading expone
e. Similar fitting procedures were used to produce Figs
and 8, where the leading exponent isb/n and 1/n, respec-
tively.

A fit of the data in Figs. 4~b! and 4~d! produces a rathe
universal estimatebgr8 /n50.2260.02. As a consequence, th
rigid backbone isfractal at pc , with a fractal dimension
DB51.7860.02. In the connectivity case@Fig. 4~a!#, we find
@34# b8/n50.35060.005, or DB51.65060.005, which is
consistent with the most precise prior work@40,41#.

Now we considerP` and PD . In the connectivity case
@Fig. 4~a!#, an analysis of the dangling ends and infinite clu
ter probabilities@Fig. 5~a!# both lead to the estimateb/n
50.10–0.11, in agreement with the exact result5

48 . In the
rigidity case however, there are strong finite-size effects
even at sizes ofL53200 @joint-bar rigidity, Fig 4~b!#, and
L54096 @body-joint rigidity, Fig. 4~d!#; it looks as though
the dangling probability may be saturating, while the infin
cluster density continues to decrease. SinceP`5PB1PD , it
is expected that asymptoticallyP` and PD must behave in
the same manner.

Clearly the numerical results for the range of system si
currently available are still controlled by finite-size effec
and the results depend on the analysis method chosen. Ja
and Thorpe@22# chose to interpret the infinite cluster pro
ability as being key. A fit to theP` data of Figs. 4~b! and
4~d! yields b/n50.14760.005 @see Figs. 5~b! and 5~c!#, in
agreement with Jacobs and Thorpe. But a similar fit of
dangling end density givesb/n;0.03 for the joint-bar rigid-
ity case@Fig. 5~b!# and b;0.01 for the body-joint rigidity
case@Fig. 5~c!#. In our previous work@21# we were guided
by the Cayley tree results@42#, which indicated a first-orde
jump in the infinite cluster probability. We thus chose
interpret Figs. 4~b! and 4~d! as indicating a saturation of th

FIG. 4. Density of backbone bonds~circles!, dangling bonds
~squares!, and infinite cluster bonds~diamonds! at the AS critical
point for ~a! connectivity percolation (g5G51) on a site-diluted
square lattice;~b! rigidity percolation (g52,G53) on a site-diluted
triangular lattice;~c! rigidity on a randomly braced square lattic
and ~d! body rigidity (G5g53) on a site-diluted square lattice .
5
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infinite cluster probability at the dangling end value of abo
0.1. Having extended our data fromL51024 to 4096, it now
looks more likely that a small value ofb occurs in the rigid-
ity case@Figs. 5~b! and 5~c!#, though much larger simulation
sizes are required to findb/n precisely.

Due to the slow finite-size effects found in the analysis
the infinite cluster and dangling end probabilities, it is na
ral to be concerned about the effect of boundary conditi
and other, usually nonuniversal, parameters on the obse
results. For generic joint-bar rigidity case on triangular l
tices we thus tested a variety of different boundary con
tions for both site and bond dilution. These data are p
sented in Fig. 6, from which it is seen that the conclusio
drawn from the case of rigidity percolation with applied b
bars are quite robust.

FIG. 5. The spanning cluster density exponentb/n as numeri-
cally estimated for~a! connectivity percolation on a square lattic
(Lmax54096), ~b! rigidity percolation on a triangular lattice (Lmax

53200), and~c! body rigidity on a square lattice (Lmax54096).
Two estimates result in each case from fitting the scaling of sp
ning cluster density~triangles! and dangling-end density~circles!.
Solid lines are fits using Eq.~1!.
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Finally, the behavior of the dangling end density as
function of p is also quite striking. These data are presen
in Fig. 7. At very highp, nearly all bonds belong to th
backbone, so the dangling end density approaches zero
low pc , there is no infinite cluster, so there are again
dangling ends. There then must be a maximum in the den
of dangling ends betweenpc andp51. As seen in Fig. 7, the
interesting feature is the abrupt drop in the dangling den
at pc , a feature that appears to become more pronoun
with increasing sample size. It is tempting to interpret this
definitive evidence of a first-order rigidity transition, but it
also consistent with the strong finite-size effects seen in F
4~b!, 4~d!, and 6, so we must await large lattice simulatio
for a definitive analysis.

Now we turn to the calculation of the correlation leng
exponent for rigidity percolation. When there is a secon
order rigidity transition, there is a diverging correlatio
length j;up2pcu2n. We can find the exponentn of this
divergence by measuring the sample-to-sample fluctuat
in pc as a function ofL. The dispersions(L)5A(^pc

2&L

2^pc&L
2), and according to finite-size scalings(L);L21/n.

FIG. 6. Backbone densityPB ~solid lines! and dangling-end
densityPD ~dashed lines! as a function of sample size at the pe
colation threshold of each sample, on triangular lattices for bo
diluted AS with bus-bars~circles!, site-diluted AS with bus bars
~diamonds!, site-diluted AS without bus-bars~triangles!, and site-
diluted IS without bus-bars. The AS percolation point without b
bars is defined as the concentration of sites or bonds for which t
is, for the first time, a rigid connection between at least one pai
points on opposite sides of the sample.

FIG. 7. Fraction of dangling ends on the (g52,G53) generic
rigidity infinite cluster, as a function ofp, for site-diluted triangular
lattices of sizesL532, 64, 128, 256, 512, and 1024. Data sho
here are for the AS case with bus bars.
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An asymptotic analysis fors(L) is shown in Fig. 8~a! for
connectivity percolation, in Fig. 8~b! for joint-bar rigidity
and in Fig. 8~c! for body-joint rigidity. From these figures we
estimate 1/n50.7560.01 ~the exact value is 1/n53/4) for
connectivity percolation and 1/n50.8560.02 for rigidity
percolation. This provides further strong evidence that rig
ity percolation is second order in two dimensions, thoughnot
in the same universality class as scalar percolation. In
case of the first order rigidity on the braced square net@Fig.
9~c!#, the variations inpc behave asL23/2, in accordance
with analytical results for this model@43#.

Our algorithm also identifies the cutting~also calledred
or critical! bonds at the percolation point, for the case of A
percolation. The numberNR of red bonds scales atpc asLx.
Coniglio @35# showed thatx51/n exactly, forscalar perco-
lation. Numerical evidence suggesting thatx51/n also in

-

re
f

FIG. 8. The thermal exponent 1/n as numerically estimated fo
~a! connectivity percolation (g5G51) on square lattice,~b! rigid-
ity percolation (g52,G53) on a triangular lattice, and~c! body
rigidity on a square lattice (G5g53). Two independent estimate
result in each case from fitting the scaling of red bonds~triangles!
and fluctuations inpc ~circles!.
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2620 PRE 59C. MOUKARZEL AND P. M. DUXBURY
rigidity percolation was first presented in Ref.@20#. It is in
fact possible to extend Coniglio’s reasoning to the case
central-force rigidity percolation@43#. It turns out thatx
51/n has to be rigorously satisfied also in this case, a
therefores(L) and 1/NR(L) must have the same slope in
log-log plot. Analysis of the number of cutting bonds is al
presented in Fig. 8, and yields values of 1/n consistent with
the analysis of variations in percolation thresholds descri
in the previous paragraph.

Since the Cayley tree model@42# gives behavior quite
similar to the braced square net@24#, i.e., a first-order rigidity
transition, it is interesting to ask whether the rigidity tran
tion is ‘‘usually’’ like that on the braced square net~i.e., first
order!, or whether the second-order transition found on
angular lattices is more typical. In order to probe this iss
we analyze a model which interpolates between the bra

FIG. 9. The volume fraction of~a! backbone bonds,~b! cutting
bonds, and~c! the fluctuations(pc) at the rigidity threshold for a
square lattice withq50 @this is the braced square net~filled
squares!#, a square lattice withq50.1 ~circles!, a square lattice with
q50.40 ~squares!, a triangular lattice with bond dilution~dia-
monds!, and a triangular lattice with site dilution~triangles!.
f
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d
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-
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square net and the triangular lattice. In the braced square
the random diagonals are present with probabilitypd , to
make the lattice rigid it is sufficient~though not necessary! to
add one diagonal to every row of the square lattice. T
probability that a spanning cluster exists is thenP15@1
2(12pd)L#L, from which we findpd* ; ln L/L.

We generalize this model by randomly adding the diag
nals ~with probability pd) to a square lattice whose bond
have been diluted with probabilityq. The braced square ne
is q50, while if q512pd this model is equivalent to the
bond-diluted triangular lattice. Typical results for variou
values ofq are presented in Fig. 9. It is seen that even fo
small amount of dilution of the square lattice, e.g.,q
50.10, the rigidity transition returns to the behavior chara
teristic of the homogeneously diluted triangular case~see
Fig. 9!. We find that for sufficiently large lattice sizes, th
universal behavior found in the other rigidity cases holds
any finiteq,0.5 ~for larger values ofq it is not possible to
rigidize the lattice by randomly adding diagonals!, and we
suggest that the ‘‘fully first-order’’ transition~i.e., a first-
order backbone! only occurs in the special case of a perfe
~undiluted! square lattice.

IV. CONCLUSIONS

We have compared three types of percolation transition
two dimensions: the connectivity transition, the generic
gidity transition on the triangular lattice, and the generic
gidity transition on the braced square lattice. A summary
our understanding is as follows:~i! The generic rigidity tran-
sition on triangular lattices is second order withn51.16
60.03, 0<b<0.2, and b850.2560.02. ~ii ! The rigidity
transition on the braced square net is first order with fin
backbone, spanning cluster, and cutting bond densities a
percolation threshold. Only the value ofb for the generic
rigidity transition on triangular lattices remains controversi
due to the very strong finite-size effects in that case.
illustrate the fact that our data are inconsistent with a fir
order backbone in the site-joint rigidity case, we have dev
oped the following scaling argument.

Assume that the backbone mass@44# scales asMB;LDB

at pc . If the backbone is compact, thenDB5d, the dimen-
sion of the system. The backbone mass is composed of
~or cutting! bonds plus ‘‘blobs’’ of overconstrained, or sel
stressed bonds~see Fig. 3!. ThereforeMB5M red1Mblobs.
The number of red bonds in the backbone scales asM red
;L1/n, as analytical results@35,43# and the simulations re
ported here show. Let us furthermore writeMblobs
5nblobsmblobs, where nblobs is the number of blobs in the
backbone, andmblobs is the average number of bonds in
blob. ThereforeLDB;L1/n1nblobsmblobs. Now the AS back-
bone is anexactly isostaticbody-bar structure, formed by
rigid clusters ~blobs! joined by bars~red bonds!, so that
counting of degrees of freedom is exact on it and soM red
53nblobs12ns23 @30#. Herens is the number of sites in the
backbone, that do not belong to a blob~see Fig. 3!. This
identity is known as Laman’s condition@45,30#, and results
from the fact that each red bond acts as a bar and there
restricts one degree of freedom, while each blob has th
degrees of freedom and isolated sites have two. The b
bone is a rigid cluster, and therefore has three overall deg
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of freedom. We do not need to knowns for our argument. It
is enough to notice thatnblobs<Mred/3;L1/n. We can thus
write

LDB<L1/n~11mblobs/3!. ~3!

To this point, we have made no assumption about
character~compact or fractal! of the backbone, so it is valid
in general. If the transition is second order, there is a div
gent length~for example, the size of rigid clusters!, and we
expectmblobs to diverge with system size. Therefore a no
trivial value results forDB , as we find numerically. If on the
other hand there is no diverging length in the system, t
mblobs→constant for large systems, andDB5d51/n exactly.
We thus see that a compact backbone requires an exte
number of cutting bonds, and this in turn can only be sa
fied if n51/d exactly @46#. This is completely inconsisten
with our data, and so the possibility of a first-order backbo
is remote in two dimensions.
s

s

tt.

tt

an
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e

The first-order rigidity transition exhibited by the brace
square net seems to be atypical, as we illustrated usin
model which tunes continuously from that limit toward th
generic triangular lattice. We found that even a small dev
tion from the braced square lattice limit leads to a behav
similar to that of the triangular lattice. It would be intriguin
if there were a tricritical point at which first-order rigidit
ceases and second-order rigidity sets in, but we have
found a model which exhibits that behavior. Neverthele
there are a large number of other rigidity models in tw
dimensions, so the possibility is not yet ruled out.
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